分析力学基础

1 变分法简介

1.1 问题背景

变分法首先提出于解决最速降线问题:如下图:X轴向左为正,Y轴向下为正。质量为m的小球只收到沿Y轴正向的重力mg,从定点$(x_1,y_1)$到定点$(x_2,y_2)$的所有光滑连续轨迹中,哪一条用时最短?

这里强调连续是出于对于物理世界的直觉经验,一般不连续的轨迹很难实现用时最短

可以将以上问题转化为如下数学问题:设该轨迹方程为$y=y(x)$

由机械能守恒:
$$
\begin{align}
mgy=\frac{1}{2}mv^2
\end{align}
$$
化简得到:
$$
\begin{align}
v=\sqrt{2gy}
\end{align}
$$
设总时间为T:
$$
\begin{align}
T&= \int_{x_1}^{x_2} dt\
&= \int_{x_1}^{x_2} \frac{1}{v}ds\
&= \int_{x_1}^{x_2} \sqrt{\frac{1+y’^2}{2gy}}dx
\end{align}
$$

我们观察发现T是关于$y(x)$这个函数的函数(每一个$y(x)$对应一个T值),我们称这类函数的函数为泛函。而我们的工作就是要求出这个泛函取极小值时对应的$y(x)$

1.2 准备工作

Lemma1:若$\int_{a}^{b}M(x)\beta(x)dx=0$,其中$\beta(x)$为任意函数,则$M(x)=0$。
proof:

  1. 几何理解:若$\beta(x)$为在x轴上任意取一段的凸起(如图),那$M(x)$在这段必为0,由于任意性,$M(x)$应该处处为0

    严格上说应该是几乎处处为0(其实可以允许一些离散的点不等于0,但我们一般研究的是连续函数,所以这类函数我们不作考虑

  2. 代数证明:


$$
\beta(x)=-M(x)(x-a)(x-b)
$$


$$
\int_{a}^{b} M(x)\beta(x)dx=\int_{a}^{b} M^2(x-a)(b-x)dx=0
$$

由于

$$
(x-a)(b-a)>0
$$

因此

$$
M(x)=0
$$

1.3 Euler Equation

设$y(x)$为我们希望求的解,$\bar{y}(x)$为连接两点间所有光滑曲线的集合


$$
\begin{align}
\bar{y}(x)=y+\epsilon\beta(x)
\end{align}
$$

其中$\epsilon$为一实数,$\beta(x)$是一可变动的函数

$\bar{y}(x)$有几个比较好的性质:

  1. $\beta(x_1)=\beta(x_2)=0$

  2. 当$\epsilon=0$时,$T$取得极值


$$
I(\epsilon)=\int^{x_2}_{x_1}F(x,\bar{y},\bar{y’})dx,其中\bar{y}=y+\epsilon\beta(x),\bar{y’}=y’+\epsilon\beta’(x)
$$

由以上性质:

$$
\begin{align}
\left. \frac{dI}{d\epsilon} \right|{\epsilon=0} = \int{x_1}^{x_2} \frac{\partial F}{\partial \epsilon}dx
\end{align}
$$

$$
\begin{align}
= \int_{x_1}^{x_2} (\frac{\partial F}{x}\frac{\partial x}{\partial \epsilon}+\frac{\partial F}{\partial \bar{y}}\frac{\partial \bar{y}}{\partial \epsilon}+\frac{\partial F}{\partial \bar{y’}}\frac{\partial \bar{y’}}{\partial \epsilon})dx
\end{align}
$$

$$
\begin{align}
= \int_{x_1}^{x_2} (\frac{\partial F}{\partial \bar{y}} \beta+\frac{\partial F}{\partial \bar{y’}} \beta ')dx
\end{align}
$$

由分部积分法:

$$
\begin{align}
\int_{x_1}^{x_2} \frac{\partial F}{\partial y’} d \beta = \frac{\partial F}{\partial y’} \left. \beta \right|{x_1}^{x_2} - \int{x_1}^{x_2} \beta d (\frac{\partial F}{\partial y’})
\end{align}
$$

$$
\because\beta(x_1)=\beta(x_2)=0
$$

$$
\begin{align}
\therefore\int_{x_1}^{x_2} \frac{\partial F}{\partial y’}d\beta=-\int^{x_2}_{x_1} \beta d(\frac{\partial F}{\partial y’})
\end{align}
$$

$$
\begin{align}
\left. \frac{dI}{d\epsilon} \right|{\epsilon=0} = \int{x_1}^{x_2} \frac{\partial F}{\partial y}\beta dx-\beta\frac{d(\frac{\partial F}{\partial y’})}{dx}dx
\end{align}
$$

$$
\begin{align}
=\int^{x_2}_{x_1} \beta(\frac{\partial F}{\partial y}-\frac{d(\frac{\partial F}{\partial y’})}{dx})dx
\end{align}
$$

$\beta$为一任意变动的函数,由Lemma1可得:

$$
\begin{align}
\frac{\partial F}{\partial y}\beta dx-\beta\frac{d(\frac{\partial F}{\partial y’})}{dx}=0
\end{align}
$$

式(14)就是Euler equation的第一种形式

1.4 Euler equation第二形式

考虑$\frac{dF(x,y,y’)}{dx}$:
$$
\begin{align}
\frac{dF}{dx}=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}y’+\frac{\partial F}{\partial y’}y’’
\end{align}
$$

由于

$$
\begin{align}
\frac{d}{dx}(y’\frac{\partial F}{\partial y’})=y’‘(\frac{\partial F}{\partial y’})+y’\frac{d}{dx}(\frac{\partial F}{\partial y’})
\end{align}
$$

将(15)(16)联立:

$$
\begin{align}
\frac{d}{dx}(F-y’\frac{\partial F}{\partial y’})-\frac{\partial F}{\partial x}=y’(\frac{\partial F}{\partial y}-\frac{d}{dx}(\frac{\partial F}{\partial y’}))=0
\end{align}
$$

(17)式即为Eule equation的第二形式,当$\frac{\partial F}{\partial x}=0$时:

$$
\begin{align}
\frac{d}{dx}(F-y’\frac{\partial F}{\partial y’})=0
\end{align}
$$

$$
\begin{align}
F-y’\frac{\partial F}{\partial y’}=C
\end{align}
$$

1.5 最速降线问题解决

对(5)式应用Euler equation的第二形式,令$F=\sqrt{\frac{1+y’^2}{2gy}}$:
$$
\begin{align}
\frac{\partial F}{\partial y’}=\frac{y’}{\sqrt{2gy(1+y’^2)}}
\end{align}
$$

化简得:

$$
\begin{align}
\frac{dy}{dx}=\sqrt{\frac{c}{y}-1}
\end{align}
$$
利用偏微分方程知识可以接触来$y(x)$实际上为摆线方程

2 Lagrange equation

分析力学中,我们定义作用量$L$:
$$
L=T-V
$$
其中T为系统动能,V为系统势能则Lagrange equation为:
$$
\begin{align}
\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}})-\frac{\partial L}{\partial q}=\widetilde{Q}
\end{align}
$$
$\widetilde{Q}$为系统所受非保守力通过上述对变分法的了解,我们不难发现Lagrange equation实际上就是令$L$取极小值时的Euler equation第一形式,这也是最小作用量原理的由来。

3 Hamliton’s equations

3.1 Legendre transformation(勒让德变换)

对于一个多元函数$X=X(x_1,x_2,…,x_n;\alpha_1,\alpha_2,…,\alpha_m)$,设$y_i=\frac{\partial X}{\partial x_i}$,我们定义其Lerangge transformation $Y=Y(y_1,y_2,…,y_n;\alpha_1,\alpha_2,…,\alpha_m)$为:
$$
\begin{align}
Y=\sum_{i=1}^{n}x_iy_i-X
\end{align}
$$

且根据Legendre transformation的性质,我们有:

$$
\begin{align}
x_i=\frac{\partial Y}{\partial y_i}
\end{align}
$$

即legendra transformation的逆变换也是legendra transformation
还得到

$$
\begin{align}
\frac{\partial Y}{\partial \alpha_i}=-\frac{\partial X}{\partial \alpha_i}
\end{align}
$$

3.2 From Lagrange equation to Hamliton’s equations

经典Lagrangian为$L=L(q_1,q_2,…,q_n;\dot{q_1},\dot{q_2},…,\dot{q_n})$,其中$q$为广义坐标,$\dot{q}$为广义速度定义广义动量p为:
$$
\begin{align}
p_i=\frac{\partial L}{\partial \dot{q_i}}
\end{align}
$$

由legendra transformation得 Hamiltonian H:

$$
\begin{align}
H=\sum_{i=1}^{n}p_i\dot{q_i}-L
\end{align}
$$
且由式(24)得:
$$
\begin{align}
\dot{q_i}=\frac{\partial H}{\partial p_i}
\end{align}
$$
带入Lagrange equation得:
$$
\begin{align}
p_i=-\frac{\partial H}{\partial q_i}+\widetilde{Q}
\end{align}
$$
式(28)(29)即为Hamliton’s equations